Fast Partitioning of Vector-Valued Images

نویسندگان

  • Martin Storath
  • Andreas Weinmann
چکیده

We propose a fast splitting approach to the classical variational formulation of the image partitioning problem, which is frequently referred to as the Potts or piecewise constant Mumford–Shah model. For vector-valued images, our approach is significantly faster than the methods based on graph cuts and convex relaxations of the Potts model which are presently the state-of-the-art. The computational costs of our algorithm only grow linearly with the dimension of the data space which contrasts the exponential growth of the state-of-the-art methods. This allows us to process images with high-dimensional codomains such as multispectral images. Our approach produces results of a quality comparable with that of graph cuts and the convex relaxation strategies, and we do not need an a priori discretization of the label space. Furthermore, the number of partitions has almost no influence on the computational costs, which makes our algorithm also suitable for the reconstruction of piecewise constant (color or vectorial) images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the character space of Banach vector-valued function algebras

‎Given a compact space $X$ and a commutative Banach algebra‎ ‎$A$‎, ‎the character spaces of $A$-valued function algebras on $X$ are‎ ‎investigated‎. ‎The class of natural $A$-valued function algebras‎, ‎those whose characters can be described by means of characters of $A$ and‎ ‎point evaluation homomorphisms‎, ‎is introduced and studied‎. ‎For an‎ ‎admissible Banach $A$-valued function algebra...

متن کامل

Lower semicontinuity for parametric set-valued vector equilibrium-like problems

A concept of weak $f$-property for a set-valued mapping is introduced‎, ‎and then under some suitable assumptions‎, ‎which do not involve any information‎ ‎about the solution set‎, ‎the lower semicontinuity of the solution mapping to‎ ‎the parametric‎ ‎set-valued vector equilibrium-like problems are derived by using a density result and scalarization method‎, ‎where the‎ ‎constraint set $K$...

متن کامل

Second dual space of little $alpha$-Lipschitz vector-valued operator algebras

Let $(X,d)$ be an infinite compact metric space, let $(B,parallel . parallel)$ be a unital Banach space, and take $alpha in (0,1).$ In this work, at first we define the big and little $alpha$-Lipschitz vector-valued (B-valued) operator algebras, and consider the little $alpha$-lipschitz $B$-valued operator algebra, $lip_{alpha}(X,B)$. Then we characterize its second dual space.

متن کامل

Generalized Ritt type and generalized Ritt weak type connected growth properties of entire functions represented by vector valued Dirichlet series

In this paper, we introduce the idea of generalized Ritt type and generalised Ritt weak type of entire functions represented by a vector valued Dirichlet series. Hence, we study some growth properties of two entire functions represented by a vector valued Dirichlet series on the basis of generalized Ritt type and generalised Ritt weak type.

متن کامل

On the character space of vector-valued Lipschitz algebras

We show that the character space of the vector-valued Lipschitz algebra $Lip^{alpha}(X, E)$ of order $alpha$ is homeomorphic to the cartesian product $Xtimes M_E$ in the product topology, where $X$ is a compact metric space and $E$ is a unital commutative Banach algebra. We also characterize the form of each character on $Lip^{alpha}(X, E)$. By appealing to the injective tensor product, we the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014